Устный счет
за 30 дней
Научим считать
быстрее, точнее, легче
Узнать подробнее

Извлечение корня

Извлечение корня

Содержание Еще

Извлечение корня

Извлечение корня – обратная операция возведению степени. То есть Извлекая корень из числа Х, получим число, которое в квадрате даст то самое число Х.

Извлечение корня довольно-таки несложная операция. Таблица квадратов сможет облегчить работу по извлечению. Потому что, наизусть помнить все квадраты и корни невозможно, а числа могут встретиться большие.

извлечение корня, таблица квадратов

Извлечение корня из числа

Извлечение квадратного корня из числа – просто. Тем более что это можно делать не сразу, а постепенно. Например, возьмем выражение √256. Изначально, незнающему человеку сложно дать ответ сразу. Тогда будем делать по шагам. Сначала разделим на просто число 4, из которого вынесем за корень выделенный квадрат.

Изобразим: √(644), тогда это будет равносильно 2√64. А как известно, по таблице умножения 64=88. Ответ будет 2*8=16.

Запишитесь на курс "Ускоряем устный счет, НЕ ментальная арифметика", чтобы научиться быстро и правильно складывать, вычитать, умножать, делить, возводить числа в квадрат и даже извлекать корни. За 30 дней вы научитесь использовать легкие приемы для упрощения арифметических операций. В каждом уроке новые приемы, понятные примеры и полезные задания.

Ускоряем устный счет, НЕ ментальная арифметика, учимся быстро считать, не ментальная арифметика
Записаться на курсУзнать подробнее


Извлечение комплексного корня

Корень квадратный не может вычисляться из отрицательных чисел, потому что любое число в квадрате – положительное число!

Комплексное число – число i, которое в квадрате равно -1. То есть i2=-1.

В математике существует число, которое получается при извлечении корня из числа -1.

То есть есть возможность вычислить корень из отрицательного числа, но это уже относится к высшей математике, не школьной.

Рассмотрим пример такого извлечения корня: √(-49)=7*√(-1)=7i.

Калькулятор корня онлайн

С помощью нашего калькулятора, Вы сможете посчитать извлечение числа из квадратного корня:

Загрузка калькулятора...

Преобразование выражений, содержащих операцию извлечения корня

Суть преобразования подкоренных выражений в разложении подкоренного числа на более простые, из которых можно извлечь корень. Такие как 4, 9, 25 и так далее.

Приведем пример, √625. Поделим подкоренное выражение на число 5. Получим √(1255), повторим операцию √(2525), но мы знаем, что 25 это 52. А значит ответом будет 5*5=25.

Но бывают числа, у которых корень таким методом не вычислить и просто нужно знать ответ или иметь таблицу квадратов под рукой.

√289=√(17*17)=17

Итог

Мы рассмотрели лишь верхушку айсберга, чтобы понять математику лучше - записывайтесь на наш курс: Ускоряем устный счет - НЕ ментальная арифметика.

Из курса вы не просто узнаете десятки приемов для упрощенного и быстрого умножения, сложения, умножения, деления, высчитывания процентов, но и отработаете их в специальных заданиях и развивающих играх! Устный счет тоже требует много внимания и концентрации, которые активно тренируются при решении интересных задач.

Ускоряем устный счет, НЕ ментальная арифметика, учимся быстро считать, не ментальная арифметика
Записаться на курсУзнать подробнее

Остались вопросы?

Отправьте ваш вопрос на почту feedback@cepia.ru и я вам помогу 😉

Автор
Извлечение корня
https://cepia.ru/images/u/pages/izvlechenie-kornya-cover-113.jpg
2023-05-11
https://cepia.ru/izvlechenie-kornya
Понравилось? Поделитесь с друзьями!
Научитесь быстро считать в уме за 30 дней
Полезные онлайн-курсы от автора сайтаСкорочтение за 30 днейСупер-память за 30 днейРазвитие памяти и внимания у ребенкаУскоряем устный счетДеньги и мышление миллионераСекреты фитнеса мозга
Поделиться